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ABSTRACT

We investigate Musical Metacreation algorithms by ap-
plying Music Information Retrieval techniques for com-
paring the output of three off-line, corpus-based style imi-
tation models. The first is Variable Order Markov Chains,
a statistical model; second is the Factor Oracle, a pattern
matcher; and third, MusiCOG, a novel graphical model
based on perceptual and cognitive processes. Our focus is
on discovering which musical biases are introduced by the
models, that is, the characteristics of the output which are
shaped directly by the formalism of the models and not by
the corpus itself. We describe a system that implements the
three models, along with a methodology for the quantita-
tive analysis of model output, when trained on a corpus of
melodies in symbolic form. Results show that the models
output are indeed different and suggest that the cognitive
approach is more successful at the tasks, although none
of them encompass the full creative space of the corpus.
We conclude that this methodology is promising for aiding
in the informed application and development of generative
models for music composition problems.

1. INTRODUCTION

Computational Musicology has generally focused on study-
ing human composed music, however, algorithms for mu-
sic generation provide a rich and relatively unexplored area
for study. As algorithmic and generative models grow in
number and complexity, the task of selecting and applying
them to specific musical problems still remains an open
question, for example, in the development of Computer
Aided Composition (CAC) environments.

Stylistic Imitation, a particular Musical Metacreative ap-
proach [21], can be described as creativity arising from a
pre-established conceptual space. This is at times referred
to as Exploratory Creativity [5] and in practical musical
terms is about generating new and original compositions
that roughly cover the same space as the corpus, thus fit-
ting a given musical style [2]. The conceptual space of
a style can be defined by observing the musical features
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which remain invariant across the corpus.
The techniques applied for this task can be broadly cate-

gorized into two methodological groups: corpus based and
non-corpus based methods. In the former, musical knowl-
edge of the style is obtained through empirical induction
from existing music compositions (generally in symbolic
MIDI format), using machine learning techniques. Whereas
in the latter this knowledge is provided by researchers in
the form of theoretical and/or rule-based representations.

We are concerned here with applying Music Informa-
tion Retrieval (MIR) tools in a controlled setting for the
purpose of understanding more completely how these meth-
ods behave in real world applications. For this study we
have chosen three corpus based models: the statistical Vari-
able Order Markov Model (VOMM) [20], the Factor Or-
acle (FO) pattern matcher [8], and MusiCog [15], a novel,
cognitively inspired approach used for the suggestion and
contextual continuation (reflexive interaction) of musical
ideas in the notation-based CAC system Manuscore [14].

The main question that we address is: given three corpus-
based style-imitative models, which characteristics of the
output are shaped by the underlying models themselves
and not by the corpus? That is, we aim to discover the mu-
sical biases which arise from the formalism of the models.
To answer this we investigate how each model’s output is
different in a statistically significant way.

A second question that arises is: what is the appropri-
ate methodology for this research problem? We propose
a framework and methodology for generating and evaluat-
ing melodies in a controlled setting where all models share
the same fundamental conditions (Section 3.1). We use
inter-model analysis to compare features from the melodic
output of each model to the corpus and to the output of all
other models, and intra-model analysis to reveal informa-
tion about the relationships between the melodies gener-
ated by a single model.
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Our contributions are: (1) a corpus of classical, popular,
and jazz melodies, (2) META-MELO a MAX/MSP imple-
mentation of the three models, used for melodic genera-
tion from a corpus (Section 3), (3) a methodology which
applies Machine Learning and MIR techniques for model
output comparison (Section 5), and (4) the results of a
study where we apply this methodology (Section 6).

Finally, we distinguish the tasks of composition from
interpretation and are concerned here only with the former.



2. EXISTING WORK

We address the problem of music evaluation by using com-
putational techniques to investigate model output in com-
parison to human-composed corpora, but also in terms of
model self-consistency. This analysis is useful for deter-
mining which model output is truer to a corpus, and also
for discovering more precisely how the models differ. Our
hypothesis is that they differ to a degree that is statistically
significant, and that this difference has an effect that is per-
ceptible and can be described as a musical bias.

Manaris et. al. [13] use an artificial ‘critic’ based on
power-law metrics as a fitness function for an evolution-
ary generative model, there is a computational evaluation
of the similarity of generated melodies to the corpus. Be-
gleiter et. al. [4] compare the output of different VOMM
algorithms in the music domain, with the goal of measur-
ing performance in terms of prediction; i.e., how closely a
model imitates a particular style.

Very relevant to our work is the evaluation provided
by Pearce and Wiggins [22] which empirically compares
the output of three variants of Markov models trained on
chorale melodies using musical judges. The stepwise re-
gression also described provides directions for improving
the models by indicating the quantifiable musical features
which are most predictive in their failure.

Our approach empirically compares the output of three
methodologically distinct corpus-based music generation
models, without the intervention of human listeners. We
also provide a simple technique for aiding the development
of the models using decision trees.
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3. META-MELO

The system, implemented in MAX/MSP, is available for
download together with the training corpus and a more de-
tailed model description than is provided here [17]. We fol-
low with a presentation of this component of the method-
ology presented in Figure 1.

3.1 Music Representation and MIDI Parsing

The system uses a simple but flexible representation for
learning melodic (monophonic) music inspired by the multi-
viewpoint approach proposed by Conklin and Witten [7].
The symbols used for the Markov model and Factor Or-
acle systems are derived from the concatenation of pitch
interval and onset interval information. Several attributes
can be used to train the models, which brings immediate
challenges for the evaluation and comparison methodol-
ogy. The approach we have chosen is to restrict the study
and the description of the system, for the purpose of com-
paring the models in a controlled setting.

If the algorithms of the models are implemented in a
simple form, we are likely to achieve a more transpar-
ent comparison, but with less interesting musical output,

therefore reducing the value of the analysis. On the other
hand, if more sophisticated implementations with musical
heuristics are used for improving musical output, we will
obtain results which are of poor generalization power with
regards to the underlying models. It is worth noting that,
in contrast to the corpus, none of the models contains an
explicit model of tonality.

For the Markov and Factor Oracle implementations, the
set of attributes is indexed and a dictionary is built for the
set of symbols corresponding to that attribute. This way,
when an event is observed which has not appeared before,
a new entry is created in the dictionary. An important func-
tion in this initial stage is the quantization of temporal val-
ues to a reasonable minimum resolution of sixteenth notes.
This allows the parsing function to: (1) group and classify
similar events as the same element in the dictionary and
(2) avoid creating entries with negligible differences. This,
of course, would not be the case when dealing with human
performance, where rhythmic variation based on interpre-
tation is an important factor, but we restrict ourselves with
composition.

We parse the melody by individual note events rather
than grouping by beats or bars for the purpose of obtaining
an event-level granularity. Therefore there is no preserva-
tion of beat or measure information. For example, if there
are two eighth-notes in a beat, we create an event for each
note (note level) rather than one event with two notes (beat
level). The disadvantage is that metric hierarchy is lost but,
on the other hand, this will make evident certain biases that
would otherwise be masked. For example, syncopation in-
troduced by the model will be amplified by parsing at the
note level. This was chosen since it correlates with the
method used by MusiCOG, thus making all models more
comparable.

Since MusiCOG is a cognitive model [15], it handles
the parsing of MIDI input using principles of music per-
ception and cognition which are not included in the other
two models and also does not require some of the prelimi-
nary parsing described above.

3.2 Corpus

The corpora consist of monophonic MIDI files from Clas-
sical, Jazz, Popular music, and Folk songs. These classes
were selected for the purpose of investigating model be-
haviour in contrasting musical settings. We use a Finnish
folk song collection that is available for research purposes
[10], and manually created the other corpora by extracting
melodies from MIDI files freely available on the web, each
corpora adding up to roughly 7000 notes each. We settled
with this number since the ratio of samples per transition
is 30, for example, the 100 piece folk corpus consists of
24 interval types (12 ascending and 12 descending) and
10 time interval types: 7000/240 = 29.2. For matters
of space we present an analysis on the Folk corpus alone
where we selected 100 pieces of 16 bars in length (revise
this). The other corpora are around 30 pieces each and the
compete collection is available for download together with
analysis results [17].



4. OVERVIEW OF THE MODELS

4.1 Markov Models

Markov Chains are a widely used statistical approach. Two
well known real-time systems implementing these tech-
niques are Zicarelli’s “M” [24] and Pachet’s “Continua-
tor” [20]. The theoretical basis lies in the field of stochas-
tics which studies the description of random sequences de-
pendent on a time parameter t. In their most basic form
Markov Chains describe processes where the probability
of a future event Xt+1 depends on the current state Xt and
not on previous events. In this way the sequences of notes
in music can be analyzed to obtain a set of probabilities
which describe the transitions between states, in this case
the transitions between musical events.

As described by Conklin [6], perhaps the most common
from of generation from Markov models is the so-called
“random walk,” in which an event from the distribution is
sampled at each time step, given the current state of the
model. After each selection the state is updated to reflect
the selection. The memory or order of the model is the
number of previous states that is considered, and thus de-
fines the order of the Markov Chain. We implement a Vari-
able Order Markov Model (VOMM) with a variability of
1-4 events.

4.2 Factor Oracle

Since music can be represented in a symbolic and sequen-
tial manner, pattern-matching techniques can be useful for
the learning and generation of pattern redundancy and vari-
ations, respectively. The Factor Oracle [1] is one example
of a text and/or biological sequence search algorithm that
has been applied to music. It is an acyclic automaton with
a linear growth in number of transitions with regards to the
input pattern, which has been utilized in string searches [3].
There exists a construction mechanism [1] allowing the al-
phabet to be grown sequentially and the complete structure
incremented online, thus allowing for the search of string
factors in real-time.

It is important to note that neither the Markov Model
nor the Factor Oracle will ever generate a transition that is
not in the corpus. Also, it is conceivable that knowledge of
the formal properties of each model could be used to eval-
uate model performance. However, as the corpus grows
in size, knowledge of the formal properties of the mod-
els alone is not of much aid in predicting their behaviour.
Hence the need for an empirical evaluation.

4.3 MusiCOG

MusiCOG, created by Maxwell [15], models perceptual
and cognitive processes, with a special focus on the for-
mation of structural representations of music in memory.
The architecture is designed for the learning and genera-
tion of musical material at various levels (pitch, interval
and contour), with an emphasis on the interaction between
short- and long- term memory systems during listening and
composition. As a cognitive model, with a complex hierar-
chical memory structure, there are many possible ways to

generate output from MusiCOG. For this study, in order to
reflect a similar systematic approach to the FO and MM,
and to avoid music theoretical or compositional heuristics,
we selected a relatively simple stochastic approach, which
attempts to balance the application of both top-down (i.e.,
structural) and bottom-up (i.e., event transition) informa-
tion.

MusiCOG is a feedback system, capable of interpreting
its own output and modifying its behaviour accordingly.
As an online model, MusiCOG will normally learn from
its own output, but an option to disable this behaviour has
been added and applied to half of the generation examples
used for all tests in the current study. This was done in
order to bring MusiCOG closer in functionality to the MM
and FO, without entirely negating important aspects of its
design.
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5. METHODOLOGY

The analysis first requires extracting features from the in-
put and output melodies, selecting significant features, and
calculating similarity measures. Then, k-means and t-tests
are used for clustering, calculating confusion matrices, and
determining significant differences. Finally, we use Classic
Multi-Dimensional Scaling (CMDS) for further investigat-
ing and interpreting the differences found. Figure 1 depicts
a diagram outlining the methodology proposed.

MCSV

MIDI
MIDI

MIDI processing & 
Feature Extraction

Analytical Results

k-means

MATLAB
MELCONV

SIMILE

MIDI-Toolbox

t-testsCMDS

MIDI

jMIR & 
MIDItoARFF

ARFF

Corpora META-MELO

J48(C4.5)
WEKA

Figure 1. The proposed methodology, META-MELO is
the generative component which is independent from the
methodology.

MATLAB is used for most data processing, feature ex-
traction, CMDS and t-test calculations. SIMILE [11] and
MELCONV are Windows command line programs devel-
oped by Frieler for the conversion and comparison of MIDI
monophonic files. The Matlab MIDI Toolbox [9] is used
for a variety of functions. WEKA [12] is used for selecting
the most significant features (C4.5 Java clone: J48) and for
further data analysis and exploration. MIDItoARFF [23]
and jSymbolic [16], a module of the jMIR toolbox from
the same author, are also used for extracting features from
MIDI files.



In Section 6.1 we describe the use of decision trees for
selecting the features that best describe the differences in
the models. These features are then used in Section 6.2
for visualizing the corpus and output of all models. In Sec-
tion 6.3 and Section 6.4 we describe similarity analysis and
CMDS respectively, used for evaluating the closeness of
the groups of melodies. Finally, we performed pairwise,
one-tailed t-tests for determining statistical significance,
described in Section 6.5.

We trained each model with 100, 16 bar long pieces
from the folk corpus and generated 32 pieces of 16 bars
long from each model [17].

6. RESULTS

6.1 Decision Trees
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Figure 2. C4.5 decision tree (J48).

We used WEKA [12] for generating a C4.5 decision tree
and reducing our feature space. This method was useful for
arriving at an initial result in the search for musical biases
by detecting which features, amongst the many extracted,
distinguish the different models from the others or the cor-
pus. Figure 2 shows a tree learned on the output from the
Folk training and the corpus collection (CC). The three fea-
tures arrived at by using the C4.5 decision tree are: (1)
Compltrans, a melodic originality measure which scores
melodies based on a 2nd order pitch-class distribution ob-
tained from a set of 15 thousand classical themes. The
value is scaled between 0 and 10 where a higher number in-
dicates greater originality. (2) Complebm, an expectancy-
based model of melodic complexity which measures the
complexity of melodies based on pitch and rhythm compo-
nents calibrated with the Essen collection. The mean value
is 5 and the standard deviation is 1, the higher the value the
greater the complexity of the melody. (3) Notedensity, the
number of notes per beat. Details of these features can be
found in the MIDI Toolbox [9].

The first number in the leaf is the count of instances that
arrive to that leaf, the number after the dash, if present, in-
dicates the count of those instances which are misclassi-
fied along with the correct class. Three aspects of the tree
stand out: (1) Most of Markov output (MM), 25 melodies,

Intra and Inter-Model Melodic Similarity
Model MM MC FO CC
Markov (MM) .206
MusiCOG (MC) .183 .208
Factor Oracle (FO) .166 .165 .198
Folk Corpus (CC) .178 .174 .154 .201

Table 1. Mean melodic similarity of model output and cor-
pora using the “Opti3” similarity measure (1.0 = identity).
Intra-model similarity is represented in the diagonal, lower
value indicates higher diversity.

are classified as Factor Oracle (FO) and are therefore not
easy to distinguish. (2) The root (Compltrans) success-
fully separates 86% of FO and MM instances from 89% of
CC and 100% of MusiCOG (MC), an indication of greater
similarity between CC and MC. (3) The Notedensity fea-
ture seems to greatly aid in classifying and distinguishing
MC from CC where other features are less successful. This
type of analysis provides valuable diagnostic insight on the
MC model since we can deduce that an increase in note
density on the output would potentially improve the imita-
tion capabilities of the model.

6.2 Originality and Complexity

In Figure 3 the corpus and the output instances for all mod-
els are plotted using the Compltrans and Complebm fea-
tures described in Section 6.1. The plot shows a clear over-
lap between the corpus and MusiCOG, whereas Markov
and Factor Oracle cluster together with higher values on
both dimensions.
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Figure 3. Expectancy Based Complexity and Original-
ity. Folk corpus and model output, the corpus collection
is marked as ‘CC’.

6.3 Similarity Analysis

It has been noted by Müllensiefen and Frieler [18, 19]
that hybrid measures have a greater predictive power than



single-attribute measures for estimating melodic similar-
ity. They provide an optimized metric ‘Opti3,’ which has
been shown to be comparable to human similarity judge-
ments [19]. Opti3 is based on a weighted linear combina-
tion of interval-based pitch, rhythmic, and harmonic simi-
larity estimates, normalized between 0-1, where a value of
1 indicates that melodies are identical.

The corpus and the three sets of model output were ana-
lyzed to establish the similarity between them (inter-corpus
analysis), as well as the diversity within the sets (intra-
corpus analysis). We use the Opti3 measure and calcu-
late the mean of the distances between each melody from
the set in the row against all melodies in the column set
(cartesian product). Looking at Table 1, we can interpret
the diagonal as intra-model dissimilarity, the diversity of
each set. Since a low value indicates higher diversity, MC
is slightly the least and FO the most diverse of all sets, in-
cluding the corpus. Furthermore, with this analysis, MM
produces the output which is most similar to the corpus.
This is the first discrepancy that we observe in the results.
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Figure 4. Multi-dimensional scaling for all models and
corpus, using the optimized distance metric ‘Opti3’. The
corpus collection is marked as ‘CC’.

6.4 Classic Multi-dimensional Scaling

CMDS is a multivariate analysis process similar to Prin-
cipal Component Analysis (PCA), used for visualizing the
clustering of N-dimensional data. We calculated dissimi-
larity matrices from the similarity measures obtained with
“Opti3”. In Figure 4 we can see that the horizontal axis
separates quite generally the corpus from the model out-
put. Although the dimensions are not easy to interpret, it
is evident that the models do not explore the full ‘creative’
range of the corpus. Correlating with the similarity analy-
sis, the diversity of FO output is apparent as it occupies a
broader range in the space. It is worth noting that a similar
topology was observed when scaling a set of 100 melodies
from each model [17].

t-test Results
Markov MusiCOG Factor Oracle

MusiCOG IVdist - -
Factor Oracle No PCdist -
Folk Corpus PCdist No PCdist

Table 2. t-test results for the Folk Corpus, ‘No’ is indicated
where no significance was found, otherwise the dimension
where significance exists (P value < 0.0001).

6.5 Significance Tests

Table 2 shows the pairwise tailed t-tests that were per-
formed on the 6 pairs of groupings of corpus and models
for determining difference across four dimensions: Pitch-
class distributions (PCdist), interval distribution (IVdist),
contour and rhythm (meldistance function [9]). First, as
in the similarity analysis, the mean distance between all
melodies in one set is measured. Second, the distance
from each melody in this set is measured against all of the
melodies in the set with which it is being compared. Fi-
nally, the t-test is run on these two sets of measurements.
Further details are available [17]). Where we found signif-
icance, it was at most in one dimensions, either PCdist or
IVdist. In those cases the P value is < 0.0001. We clearly
see that MusiCOG is different from both other models but
is not differentiated form the Corpus. On the other hand,
both Markov and the Factor Oracle are different from the
corpus and undifferentiated between themselves. These re-
sults corroborate what is graphically displayed in Figure 3.

7. CONCLUSION AND FUTURE WORK

Returning to our broad definition of stylistic imitation, we
expect successful models to roughly covering the same space
as the corpus. The CMDS diagram shows graphically that
this is not occurring in our study. Although this is an ab-
stract conclusion, it is a more general and valuable one.
This study also shows that the problem of stylistic imita-
tion warrants further research.

We have also shown that the task of investigating for
significance in the differences of the output is valuable for
validating closeness to the corpus. The decision trees in-
form us, in musical features, as to what might be other
important differences.

MusiCOG is a larger model and has more music domain
knowledge, as it is informed by music perception as well
as cognitive science and cognition. On the other hand, the
VOMM and Factor Oracle models have no musical knowl-
edge. This could be seen as a ‘knowledge bias’, which
makes MusiCOG more true to the corpus. As such, this
suggests continued investigation into developing musical
cognitive models.

We leave the following for future work: the application
of the methodology to polyphonic music, an in-depth anal-
ysis of the output of the models when trained on different
corpora, and an evaluation of the behaviour of the models
when combining stylistically diverse corpora (combinato-
rial creativity).
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